Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

a. Tìm các số \(x,\,y\)  thỏa mãn đẳng thức: \(3{x^2} + 3{y^2} + 4xy + 2x - 2y + 2 = 0\) b. Với

Câu hỏi số 284081:
Vận dụng cao

a. Tìm các số \(x,\,y\)  thỏa mãn đẳng thức: \(3{x^2} + 3{y^2} + 4xy + 2x - 2y + 2 = 0\)

b. Với \(a,\,b,\,c,\,d\) dương, chứng minh: \(F = \frac{a}{{b + c}} + \frac{b}{{c + d}} + \frac{c}{{d + a}} + \frac{d}{{a + b}} \ge 2\)

Đáp án đúng là: B

Quảng cáo

Câu hỏi:284081
Phương pháp giải

a. Biến đổi đa thức về các hằng đẳng thức bình phương của một tổng (hiệu), sau đó áp dụng tính chất bình phương của một tổng (hiệu) luôn không âm.

b. Áp dụng bất đẳng thức Cô-si.

Giải chi tiết

\(\begin{array}{l}a)\,\,3{x^2} + 3{y^2} + 4xy + 2x - 2y + 2 = 0\\ \Leftrightarrow \left( {{x^2} + 2x + 1} \right) + \left( {{y^2} - 2y + 1} \right) + 2\left( {{x^2} + 2xy + {y^2}} \right) = 0\\ \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + 2{\left( {x + y} \right)^2} = 0\end{array}\)

Ta có: \(\left\{ \begin{array}{l}{\left( {x + 1} \right)^2} \ge 0\,\forall \,x\\{\left( {y - 1} \right)^2} \ge 0\,\forall \,y\\{\left( {x + y} \right)^2} \ge 0\,\forall \,x,\,y\end{array} \right. \Rightarrow {\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {x + y} \right)^2} \ge 0\,\forall \,x,\,y\)

Do đó đẳng thức xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x + 1 = 0\\y - 1 = 0\\x + y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = 1\\x =  - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 1\\y = 1\end{array} \right.\)

Vậy \(\left( {x;\;y} \right) = \left( {1;\;1} \right).\)

b) Ta có:

\(\begin{array}{l}F = \frac{a}{{b + c}} + \frac{b}{{c + d}} + \frac{c}{{d + a}} + \frac{d}{{a + b}}\\\;\;\; = \left( {\frac{a}{{b + c}} + \frac{c}{{d + a}}} \right) + \left( {\frac{b}{{c + d}} + \frac{d}{{a + b}}} \right)\\\;\;\; = \frac{{a\left( {d + a} \right) + c\left( {b + c} \right)}}{{\left( {b + c} \right)\left( {d + a} \right)}} + \frac{{b\left( {a + b} \right) + d\left( {c + d} \right)}}{{\left( {c + d} \right)\left( {a + b} \right)}}\\\;\;\; = \frac{{{a^2} + {c^2} + ad + bc}}{{\left( {b + c} \right)\left( {d + a} \right)}} + \frac{{{b^2} + {d^2} + ab + cd}}{{\left( {c + d} \right)\left( {a + b} \right)}}.\end{array}\)

Áp dụng bất đẳng thức Cô-si cho hai số \(x\) và \(y\)  dương ta có: \({\left( {x + y} \right)^2} \ge 4xy.\)

Áp dụng bất đẳng thức trên cho hai số \(\left( {b + c} \right)\) và \(\left( {d + a} \right)\) ta có:

\(\begin{array}{l}\;\;\;\;{\left[ {\left( {b + c} \right) + \left( {a + d} \right)} \right]^2} \ge 4\left( {b + c} \right)\left( {a + d} \right)\\ \Leftrightarrow \left( {b + a} \right)\left( {a + d} \right) \le \frac{{{{\left( {a + b + c + d} \right)}^2}}}{4}.\end{array}\)

Tương tự ta có: \(\left( {c + d} \right)\left( {a + b} \right) \le \frac{{{{\left( {a + b + c + d} \right)}^2}}}{4}.\)

\(\begin{array}{l} \Rightarrow F \ge \frac{{{a^2} + {c^2} + ad + bc}}{{\frac{1}{4}\left( {b + c + d + a} \right)}} + \frac{{{b^2} + {d^2} + ab + cd}}{{\frac{1}{4}{{\left( {c + d + a + b} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \frac{{4\left( {{a^2} + {b^2} + {c^2} + {d^2} + ab + bc + cd + ad} \right)}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \frac{{2\left( {{a^2} + {b^2} + {c^2} + {d^2} + 2ab + 2bc + 2cd + 2da + 2bd + 2ac} \right) + 2\left( {{a^2} + {b^2} + {c^2} + {d^2} - 2bd - 2ca} \right)}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = \frac{{2{{\left( {a + b + c + d} \right)}^2} + 2\left[ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} \right]}}{{{{\left( {a + b + c + d} \right)}^2}}}\\\;\;\;\;\;\;\;\; = 2 + \frac{{2\left[ {{{\left( {a - c} \right)}^2} + {{\left( {b - d} \right)}^2}} \right]}}{{{{\left( {a + b + c + d} \right)}^2}}}.\end{array}\)

Ta có: \({\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} \ge 0\)

\( \Rightarrow F \ge 2.\)

Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}a - c = 0\\b - d = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = c\\b = d\end{array} \right..\)

Vậy \(F \ge 2\;\;\left( {dpcm} \right).\)

Đáp án cần chọn là: B

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com