Cho đường thẳng \(\left( d \right)\) có phương trình \(y = \left( {2k - 1} \right)x + k - 2\) (với k là
Cho đường thẳng \(\left( d \right)\) có phương trình \(y = \left( {2k - 1} \right)x + k - 2\) (với k là tham số)
a) Tìm giá trị của k biết đường thẳng \(\left( d \right)\) song song với đường thẳng \(\left( {d'} \right)\) có phương trình \(y = - 3x + 5\)
b) Với giá trị của k tìm được ở câu a, vẽ đường thẳng \(\left( d \right)\) trên mặt phẳng tọa độ và tính khoảng cách từ gốc tọa độ O đến đường thẳng \(\left( d \right)\)
Đáp án đúng là: B
Quảng cáo
a) Áp dụng điều kiện để hai đường thẳng song song để tìm k. Cho hai đường thẳng \({d_1}:\;\;y = {a_1}x + {b_1}\) và \({d_2}:\;\;y = {a_2}x + {b_2}.\) Khi đó \({d_1}//{d_2} \Leftrightarrow \left\{ \begin{array}{l}{a_1} = {a_2}\\{b_1} \ne {d_2}\end{array} \right..\)
b) Tìm giao điểm của \(\left( d \right)\) với các trục Ox, Oy, sau đó sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.
Đáp án cần chọn là: B
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











