Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

1. Thực hiện các phép tính sau: \(a)\;\sqrt {0,16}  - \sqrt {\frac{1}{{25}}} \) \(b){\left( {\frac{{ - 2}}{3}}

Câu hỏi số 286941:
Vận dụng

1. Thực hiện các phép tính sau:

\(a)\;\sqrt {0,16}  - \sqrt {\frac{1}{{25}}} \)

\(b){\left( {\frac{{ - 2}}{3}} \right)^2}.\frac{9}{{16}} + \frac{1}{2}:( - 3)\)

2. Tìm x biết:  

\(a)\;\frac{3}{7} - x = \frac{{ - 2}}{6}\)

b) \(\frac{{x - 1}}{{27}} = \frac{{ - 3}}{{1 - x}}\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:286941
Phương pháp giải

1. a) Áp dụng công thức: \(\sqrt {{A^2}}  = \left| A \right|\)

Sau đó thực hiện phép tính tuân theo quy tắc và đảm bảo thứ tự thực hiện các phép tính.

b) Áp dụng công thức: xm + n = xm.xn; xm : xn = xm – n

Thực hiện phép tính tuân theo quy tắc và đảm bảo thứ tự thực hiện các phép tính.

2. a) Biến đổi biểu thức tuân theo quy tắc chuyển vế đổi dấu, quy tắc tính toán và đảm bảo thứ tự thực hiện phép tính để tìm giá trị của x.

b) Áp dụng tính chất của tỉ lệ thức và tính chất về lũy thừa để tìm ra đáp án.

Giải chi tiết

\(1.\;a)\;\sqrt {0,16}  - \sqrt {\frac{1}{{25}}}  = \sqrt {0,{4^2}}  - \sqrt {{{\left( {\frac{1}{5}} \right)}^2}}  = 0,4 - \frac{1}{5} = \frac{4}{{10}} - \frac{1}{5} = \frac{2}{5} - \frac{1}{5} = \frac{1}{5}\)

\(\begin{array}{l}b){\left( {\frac{{ - 2}}{3}} \right)^2}.\frac{9}{{16}} + \frac{1}{2}:( - 3) = \frac{{{{( - 2)}^2}}}{{{3^2}}}.\frac{{{3^2}}}{{{2^4}}} + \frac{1}{2}.\frac{1}{{( - 3)}} = \frac{{{2^2}{{.3}^2}}}{{{3^2}{{.2}^{2 + 2}}}} - \frac{1}{{2.3}} = \frac{{{2^2}{{.3}^2}}}{{{3^2}{{.2}^2}{{.2}^2}}} - \frac{1}{6} = \frac{1}{{{2^2}}} - \frac{1}{6} = \frac{1}{4} - \frac{1}{6}\\ = \frac{{1.3}}{{4.3}} - \frac{{1.2}}{{6.2}} = \frac{{3 - 2}}{{12}} = \frac{1}{{12}}\end{array}\)

\[2.\;a)\;\frac{3}{7} - x = \frac{{ - 2}}{6} \Leftrightarrow x = \frac{3}{7} + \frac{2}{6} = \frac{3}{7} + \frac{1}{3} \Leftrightarrow x = \frac{{3.3}}{{7.3}} + \frac{{1.7}}{{3.7}} \Leftrightarrow x = \frac{{9 + 7}}{{21}} = \frac{{16}}{{21}}\]

Vậy \(x = \frac{{16}}{{21}}\).

b) \(\frac{{x - 1}}{{27}} = \frac{{ - 3}}{{1 - x}}\) (Để biểu thức có nghĩa \(\left( {1 - x} \right) \ne 0 \Leftrightarrow x \ne 1\))

\(\begin{array}{l} \Leftrightarrow (x - 1).(1 - x) =  - 3.27\\ \Leftrightarrow  - (1 - x).(1 - x) =  - {3.3^3}\\ \Leftrightarrow  - {(1 - x)^2} =  - {3.3^3}\\ \Leftrightarrow {(1 - x)^2} = {3^4} = {\left( {{3^2}} \right)^2}\\ \Leftrightarrow {(1 - x)^2} = {9^2}\\ \Rightarrow \left[ \begin{array}{l}1 - x = 9\\1 - x =  - 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1 - 9\\x = 1 + 9\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - 8\\x = 10\end{array} \right.(TM)\end{array}\)

Vậy \(x =  - 8\) hoặc  \(x = 10.\) 

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com