Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Giải các phương trình sau:  a) \(\left| {2x - 1} \right| = 3x - 4\)                           

Câu hỏi số 289687:
Vận dụng

Giải các phương trình sau:

 a) \(\left| {2x - 1} \right| = 3x - 4\)                             

b) \(\sqrt {2{x^2} - 4x + 9}  = x + 1\) 

c) \(\left( {x + 1} \right)\sqrt {{x^2} - 2x + 3}  = {x^2} + 1{\rm{     }}\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:289687
Phương pháp giải

\(\begin{array}{l}a)\,\,\left| {f\left( x \right)} \right| = g\left( x \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f\left( x \right) =  - g\left( x \right)\end{array} \right.\\b)\,\,\sqrt {f\left( x \right)}  = g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) = {g^2}\left( x \right)\end{array} \right.\end{array}\)

c) Đặt ẩn ph ụ \(t = \sqrt {{x^2} - 2x + 3} \), đưa về phương trình ẩn t, coi x là tham số.

Giải chi tiết

a) Nếu \(x \ge \dfrac{1}{2}\): Phương trình (1) trở thành \(2x - 1 = 3x - 4 \Leftrightarrow x = 3\) (t/m \(x \ge \dfrac{1}{2}\)).

Vậy\(x = 3\)là một nghiệm của phương trình (1).

Nếu \(x < \dfrac{1}{2}\): Phương trình (1) trở thành \( - 2x + 1 = 3x - 4 \Leftrightarrow x = 1\) (không t/m \(x < \dfrac{1}{2}\)).

Vậy \(x = 1\) không là nghiệm của phương trình (1)

Kết luận: Tập nghiệm \(S = \left\{ 3 \right\}\)

b) \(\sqrt {2{x^2} - 4x + 9}  = x + 1\)

\( \Leftrightarrow \left\{ \begin{array}{l}x + 1 \ge 0\\2{x^2} - 4x + 9 = {\left( {x + 1} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\{x^2} - 6x + 8 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 4\end{array} \right.\,\,\,\,\left( {tm} \right)\)

Kết luận: Nghiệm của phương trình là \(x = 2\); \(x = 4\).

c) Đặt \(t = \sqrt {{x^2} - 2x + 3}  \Rightarrow {t^2} = {x^2} - 2x + 3 \Rightarrow {x^2} = {t^2} + 2x - 3\)

Phương trình trở thành \(\left( {x + 1} \right)t = {t^2} + 2x - 2\)  \( \Leftrightarrow {t^2} - \left( {x + 1} \right)t + \left( {2x - 2} \right) = 0{\rm{     }}\left( 1 \right)\) 

Ta xem \(\left( 1 \right)\) như là phương trình bậc hai với ẩn là t và x là tham số, lúc đó:

\(\Delta  = {x^2} + 2x + 1 - 8x + 8 = {x^2} - 6x + 9 = {\left( {x - 3} \right)^2}\)\( \Rightarrow \left[ \begin{array}{l}t = \dfrac{{x + 1 + x - 3}}{2} = x - 1\\t = \dfrac{{x + 1 - x + 3}}{2} = 2\end{array} \right.\).

Với \(t = \sqrt {{x^2} - 2x + 3}  = x - 1 \Leftrightarrow {x^2} - 2x + 3 = {x^2} - 2x + 1{\rm{   }}\left( {VN} \right)\).

Với \(t = \sqrt {{x^2} - 2x + 3}  = 2 \Leftrightarrow {x^2} - 2x + 3 = 4 \Leftrightarrow {x^2} - 2x - 1 = 0 \Leftrightarrow x = 1 \pm \sqrt 2 \).

Vậy nghiệm của phương trình là \(x = 1 \pm \sqrt 2 \).

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com