Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số nghiệm của phương trình \(\sin 3x = \cos 2x\) thuộc \(\left[ {0;10\pi } \right]\)?

Câu hỏi số 290109:
Nhận biết

Tìm số nghiệm của phương trình \(\sin 3x = \cos 2x\) thuộc \(\left[ {0;10\pi } \right]\)?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:290109
Phương pháp giải

+) Giải phương trình bằng công thức nghiệm.

+) Từ công thức nghiệm tìm số nguyên k  để tìm nghiệm thỏa mãn bài toán.

Giải chi tiết

\(\sin 3x = \cos 2x \Leftrightarrow \sin 3x = \sin \left( {\frac{\pi }{2} - 2x} \right) \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 2x + k2\pi \\3x = \pi  - \left( {\frac{\pi }{2} - 2x} \right) + m2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{2} + m2\pi \end{array} \right.\,\,\,\left( {k,\;m \in \mathbb{Z}} \right).\)

Phương trình có nghiệm thuộc \(\left[ {0;\;10\pi } \right]\)

\( \Leftrightarrow \left[ \begin{array}{l}0 \le \frac{\pi }{{10}} + \frac{{k2\pi }}{5} \le 10\pi  \Leftrightarrow  - \frac{1}{4} \le k \le \frac{{99}}{4} = 24\frac{3}{4} \Leftrightarrow k \in \left\{ {0;\;1;\;2;...;\;24} \right\}\\0 \le \frac{\pi }{2} + m2\pi  \le 10\pi  \Leftrightarrow  - \frac{1}{4} \le k \le \frac{{19}}{4} = 4\frac{3}{4} \Leftrightarrow m \in \left\{ {0;\;1;...;\;4} \right\}\end{array} \right.\)

Phương trình có \(25 + 5 = 30\)  nghiệm thỏa mãn.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com