Tổng \(S = C_{2n}^13 + C_{2n}^3{3^3} + C_{2n}^5{3^5} + ... + C_{2n}^{2n - 1}{3^{2n - 1}}\) bằng:
Tổng \(S = C_{2n}^13 + C_{2n}^3{3^3} + C_{2n}^5{3^5} + ... + C_{2n}^{2n - 1}{3^{2n - 1}}\) bằng:
Đáp án đúng là: A
Quảng cáo
Sử dụng nhị thức Newton khai triển tổng \({\left( {3 + 1} \right)^{2n}}\) và \({\left( {3 - 1} \right)^{2n}}\).
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












