Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm tất cả các giá trị nguyên dương nhỏ hơn 5 của tham số m để hàm số \(y = \dfrac{1}{3}{x^3}

Câu hỏi số 301149:
Vận dụng cao

Tìm tất cả các giá trị nguyên dương nhỏ hơn 5 của tham số m để hàm số \(y = \dfrac{1}{3}{x^3} + \left( {m - 1} \right){x^2} + \left( {2m - 3} \right)x - \dfrac{2}{3}\) đồng biến trên \(\left( {1; + \infty } \right)\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:301149
Phương pháp giải

+) Hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {1; + \infty } \right) \Leftrightarrow y' \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\).

+) Cô lập m, đưa bất phương trình về dạng \(f\left( x \right) \ge m\,\,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow m \le \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right)\).

Giải chi tiết

Ta có \(y' = {x^2} + 2\left( {m - 1} \right)x + 2m - 3\).

Để hàm số đồng biến trên \(\left( {1; + \infty } \right) \Leftrightarrow y' \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\)

\(\begin{array}{l} \Leftrightarrow {x^2} + 2\left( {m - 1} \right)x + 2m - 3 \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\\ \Leftrightarrow {x^2} + 2m\left( {x + 1} \right) - 2x - 3 \ge 0\,\,\forall x \in \left( {1; + \infty } \right)\\ \Leftrightarrow {x^2} - 2x - 3 \ge  - 2m\left( {x + 1} \right)\,\,\forall x \in \left( {1; + \infty } \right)\end{array}\)

Do \(x \in \left( {1; + \infty } \right) \Rightarrow x + 1 > 0 \Leftrightarrow  - 2m \le \dfrac{{{x^2} - 2x - 3}}{{x + 1}} = f\left( x \right)\,\,\forall x \in \left( {1; + \infty } \right) \Leftrightarrow  - 2m \le \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right)\)

Xét hàm số \(f\left( x \right) = \dfrac{{{x^2} - 2x - 3}}{{x + 1}}\) trên \(\left[ {1; + \infty } \right)\) ta có:

\(f'\left( x \right) = \dfrac{{\left( {2x - 2} \right)\left( {x + 1} \right) - {x^2} + 2x + 3}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{{{x^2} + 2x + 1}}{{{{\left( {x + 1} \right)}^2}}} = 1 > 0 \Rightarrow \) Hàm số đồng biến trên \(\left[ {1; + \infty } \right)\)

\( \Rightarrow \mathop {\min }\limits_{\left[ {1; + \infty } \right)} f\left( x \right) = f\left( 1 \right) =  - 2 \Leftrightarrow  - 2m \le  - 2 \Leftrightarrow m \ge 1\).

Kết hợp điều kiện đề bài \(m \in Z,\,\,m < 5 \Rightarrow m \in \left\{ {1;2;3;4} \right\}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com