Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(2a\). Hình chiếu vuông góc của \(S\)

Câu hỏi số 301159:
Vận dụng

Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(2a\). Hình chiếu vuông góc của \(S\) trên mặt phẳng\(\left( {ABCD} \right)\) là điểm \(H\) thuộc đoạn \(BD\) sao cho\(HD = 3HB\). Biết góc giữa mặt phẳng \(\left( {SCD} \right)\) và mặt phẳng đáy bằng\({45^0}\). Khoảng cách giữa hai đường thẳng \(SA\) và \(BD\) là.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:301159
Phương pháp giải

Dựng mặt phẳng (P) chứa SA và song song với BD \( \Rightarrow d\left( {SA;BD} \right) = d\left( {BD;\left( P \right)} \right) = d\left( {H;\left( P \right)} \right)\).

Giải chi tiết

 

 

Kẻ \(HM//BC \Rightarrow HM \bot CD \Rightarrow \angle \left( {\left( {SCD} \right);\left( {ABCD} \right)} \right) = \angle SMH = {45^0}\).

Kẻ \(AE//BD\,\,\left( {E \in BC} \right)\) \( \Rightarrow BD//\left( {SAE} \right) \Rightarrow d\left( {SA;BD} \right) = d\left( {BD;\left( {SAE} \right)} \right) = d\left( {H;\left( {SAE} \right)} \right)\).

Trong (ABCD) kẻ \(HI//AC\,\,\left( {I \in AE} \right)\). Vì \(AC \bot BD \Rightarrow HI \bot AE\).

Trong (SHI) kẻ \(HK \bot SI\) ta có:

\(\left\{ \begin{array}{l}AE \bot IH\\AE \bot SH\end{array} \right. \Rightarrow AE \bot \left( {SHI} \right) \Rightarrow AE \bot HK \Rightarrow HK \bot \left( {SAE} \right) \Rightarrow d\left( {H;\left( {SAE} \right)} \right) = HK\).

Gọi \(O = AC \cap BD\), dễ dàng chứng minh được OAIH là hình chữ nhật \( \Rightarrow HI = OA = \dfrac{{2a\sqrt 2 }}{2} = a\sqrt 2 \).

Áp dụng định lí Ta-lét ta có : \(\dfrac{{HM}}{{BC}} = \dfrac{{HD}}{{BD}} = \dfrac{3}{4} \Rightarrow HM = \dfrac{3}{4}BC = \dfrac{3}{4}.2a = \dfrac{{3a}}{2}\)

\( \Rightarrow SH = HM\tan {45^0} = \dfrac{{3a}}{2}\).

Áp dụng hệ thức lượng trong tam giác vuông SHI có : \(HK = \dfrac{{SH.HI}}{{\sqrt {S{H^2} + H{I^2}} }} = \dfrac{{\dfrac{{3a}}{2}.a\sqrt 2 }}{{\sqrt {\dfrac{{9{a^2}}}{4} + 2{a^2}} }} = \dfrac{{3a\sqrt {34} }}{{17}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com