Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho cấp số cộng \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_5} + 3{u_3} - {u_2} =  - 21\\3{u_7} - 2{u_4}

Câu hỏi số 301183:
Vận dụng

Cho cấp số cộng \(({u_n})\) thỏa: \(\left\{ \begin{array}{l}{u_5} + 3{u_3} - {u_2} =  - 21\\3{u_7} - 2{u_4} =  - 34\end{array} \right.\). Tính tổng 15 số hạng đầu của cấp số.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:301183
Phương pháp giải

Đưa dữ kiện đề bài về hết \({u_1}\) và \(d\) để giải tìm chúng.

Tổng \(n\) số hạng đầu của một cấp số cộng là \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\,\)  hay  \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\,\)

Giải chi tiết

Từ giả thiết bài toán, ta có: \(\left\{ \begin{array}{l}{u_1} + 4d + 3({u_1} + 2d) - ({u_1} + d) =  - 21\\3({u_1} + 6d) - 2({u_1} + 3d) =  - 34\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d =  - 7\\{u_1} + 12d =  - 34\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d =  - 3\end{array} \right.\).

Tổng của 15 số hạng đầu: \({S_{15}} = \frac{{15}}{2}\left[ {2{u_1} + 14d} \right] = \frac{{15}}{2}\left( {2.2 + 14.\left( { - 3} \right)} \right) =  - 285\)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com