Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D và \(AB = AD = a,\,\,DC = 2a\), tam giác
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, D và \(AB = AD = a,\,\,DC = 2a\), tam giác SAD đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H là hình chiếu vuông góc vủa D trên AC và M là trung điểm H Tính diện tích mặt cầu ngoại tiếp chóp S.BDM theo a
Đáp án đúng là: D
Quảng cáo
+) Chứng minh tứ giác ABMD là tứ giác nội tiếp đường tròn đường kính BD, suy ra mặt cầu ngoại tiếp chóp S.BDM cũng chính là mặt cầu ngoại tiếp chóp S.ABMD.
+) Xác định giao điểm I của 2 trục của tứ giác ABMD là SAD. Chứng minh I là tâm mặt cầu ngoại tiếp chóp S.ABMD.
+) Tính bán kính mặt cầu ngoại tiếp \(R = IA\), sử dụng công thức tính diện tích mặt cầu \(S = 4\pi {R^2}\).
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












