Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3} - 2{x^2} + 1\) thỏa

Câu hỏi số 302439:
Vận dụng

Gọi \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3} - 2{x^2} + 1\) thỏa mãn \(F\left( 0 \right) = 5.\) Khi đó phương trình \(F\left( x \right) = 5\) có số nghiệm thực là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:302439
Phương pháp giải

Sử dụng các công thức nguyên hàm cơ bản để tìm \(F\left( x \right)\) sau đó giải phương trình.

Giải chi tiết

Ta có: \(F\left( x \right) = \int {\left( {{x^3} - 2{x^2} + 1} \right)dx}  = \dfrac{{{x^4}}}{4} - \dfrac{{2{x^3}}}{3} + x + C\)

Lại có: \(F\left( 0 \right) = 5 \Leftrightarrow C = 5 \Rightarrow F\left( x \right) = \dfrac{{{x^4}}}{4} - \dfrac{{2{x^3}}}{3} + x + 5\)

\( \Rightarrow F\left( x \right) = 5 \Leftrightarrow \dfrac{{{x^4}}}{4} - \dfrac{{2{x^3}}}{3} + x = 0 \Leftrightarrow x\left( {\dfrac{{{x^3}}}{4} - \dfrac{{2{x^2}}}{3} + 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x \approx  - 1,04\end{array} \right.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com