Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên dưới:

Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(h\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\) có đúng \(3\) điểm cực trị.

Câu 304354: Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ bên dưới:



Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(h\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\) có đúng \(3\) điểm cực trị.

A. \(m \le 1\)

B. \(m > \dfrac{1}{4}\)

C. \(m < 1\)

D. \(m \ge \dfrac{1}{4}\)

Câu hỏi : 304354

Phương pháp giải:

- Xét \(g\left( x \right) = {f^2}\left( x \right) + f\left( x \right) + m\), lập bảng biến thiên tìm số cực trị của \(y = g\left( x \right)\).


- Tìm điều kiện để \(y = h\left( x \right) = \left| {g\left( x \right)} \right|\) có đúng \(3\) cực trị và kết luận.

  • Đáp án : D
    (1) bình luận (0) lời giải

    Giải chi tiết:

     Xét \(g\left( x \right) = {f^2}\left( x \right) + f\left( x \right) + m\) có \(g'\left( x \right) = 2f\left( x \right)f'\left( x \right) + f'\left( x \right) = f'\left( x \right)\left[ {2f\left( x \right) + 1} \right]\)

    \(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f'\left( x \right) = 0\\2f\left( x \right) + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\\x = a\left( {a < 0} \right)\end{array} \right.\)  \( \Rightarrow \left\{ \begin{array}{l}g\left( 1 \right) = {f^2}\left( 1 \right) + f\left( 1 \right) + m\\g\left( 3 \right) = m\\g\left( a \right) = m - \dfrac{1}{4}\end{array} \right.\)

    Bảng biến thiên của hàm số \(y = g\left( x \right)\)

    Dựa vào bảng biến thiên, suy ra đồ thị hàm số \(y = g\left( x \right)\) có \(3\) điểm cực trị.

    Suy ra đồ thị hàm số \(h\left( x \right) = \left| {{f^2}\left( x \right) + f\left( x \right) + m} \right|\) có \(3\) điểm cực trị khi và chỉ khi đồ thị hàm số \(y = g\left( x \right)\) nằm hoàn toàn phía trên trục \(Ox\) (kể cả tiếp xúc)

    Do đó \(g\left( a \right) \ge 0 \Leftrightarrow m - \dfrac{1}{4} \ge 0 \Leftrightarrow m \ge \dfrac{1}{4}\).

    Chọn D.

    Lời giải sai Bình thường Khá hay Rất Hay
Xem bình luận

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com