Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} -
Gọi \({x_1},\;{x_2}\) là hai điểm cực trị của hàm số \(f\left( x \right) = \dfrac{1}{3}{x^3} - 3{x^2} - 2x.\) Giá trị của \(x_1^2 + x_2^2\) bằng:
Đáp án đúng là: C
Quảng cáo
Điểm \(x = {x_0}\) là điểm cực trị của hàm số \(y = f\left( x \right) \Leftrightarrow f'\left( {{x_0}} \right) = 0.\)
Biến đổi biểu thức cần tính và sử dụng định lý Vi-ét để tính toán.
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












