Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Khai triển nhị thức \({\left( {2x + y} \right)^5}\). Ta được kết quả là:

Câu hỏi số 304469:
Nhận biết

Khai triển nhị thức \({\left( {2x + y} \right)^5}\). Ta được kết quả là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:304469
Phương pháp giải

Kiến thức cần nhớ công thức tổng quát khai triển nhị thức Newton.

\({\left( {a + b} \right)^n} = C_n^0{a^n}{b^0} + C_n^1{a^{n - 1}}{b^1} + ... + C_n^n{a^0}{b^n} = \sum\limits_{k = 0}^n {C_n^k} {a^{n - k}}{b^k}\)

Giải chi tiết

Khai triển nhị thức:

\(\begin{array}{l}{\left( {2x + y} \right)^5} = C_5^0.{\left( {2x} \right)^5} + C_5^1.{\left( {2x} \right)^4}.y + C_5^2.{\left( {2x} \right)^3}.{y^2} + C_5^3.{\left( {2x} \right)^2}.{y^3} + C_5^4.{\left( {2x} \right)^1}.{y^4} + C_5^5.{\left( {2x} \right)^0}.{y^5}\\ = 32{x^5} + 80{x^4}y + 80{x^3}{y^2} + 40{x^2}{y^3} + 10x{y^4} + {y^5}.\end{array}\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com