Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối trụ \(\left( T \right),\;\;AB\) và \(CD\) lần lượt là hai đường kính trên hai mặt phẳng

Câu hỏi số 305035:
Vận dụng

Cho khối trụ \(\left( T \right),\;\;AB\) và \(CD\) lần lượt là hai đường kính trên hai mặt phẳng đáy của \(\left( T \right).\) Biết góc giữa \(AB,\;CD\) là \({30^0},\;AB = 6cm\) và thể tích khối \(ABCD\) là \(30c{m^3}.\) Khi đó thể tích khối trụ \(\left( T \right)\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:305035
Phương pháp giải

+) Gọi \(\left( O \right)\) là đường tròn đáy chứa \(AB\) và \(\left( {O'} \right)\) là đường tròn đáy chứa \(CD\).

+) Gọi \(A',\,\,B',\,C',\,\,D'\) lần lượt là hình chiếu của \(A,B,C,D\) lên các đáy còn lại, khi đó ta có hình lăng trụ đứng \(AC'BD'.A'CB'D\). Đặt \({V_{AC'BD'.A'CB'D}} = V\).

+) So sánh thể tích khối \(ABCD\) đối với \(V\), từ đó tính được \(V\).

+) Tính diện tích đáy của lăng trụ \(AC'BD'.A'CB'D\) và tính chiều cao của khối trụ \(\left( T \right)\).

+) Sử dụng công thức tính thể tích khối trụ có chiều cao \(h\) và bán kính đáy \(r\) là \(V = \pi {r^2}h\).

Giải chi tiết

Gọi \(\left( O \right)\) là đường tròn đáy chứa \(AB\) và \(\left( {O'} \right)\) là đường tròn đáy chứa \(CD\).

Gọi \(A',\,\,B',\,C',\,\,D'\) lần lượt là hình chiếu của \(A,B,C,D\) lên các đáy còn lại, khi đó ta có hình lăng trụ đứng \(AC'BD'.A'CB'D\). Đặt \({V_{AC'BD'.A'CB'D}} = V\)

Ta có:

\(\begin{array}{l}{V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + {V_{A.A'CD}} + {V_{B.B'CD}} + {V_{C.ABC'}} + {V_{D.ABD'}}\\ \Rightarrow V = {V_{ABCD}} + 4.\frac{1}{6}V \Leftrightarrow {V_{ABCD}} = \frac{1}{3}V \Rightarrow V = 3{V_{ABCD}} = 90\,\,\left( {c{m^3}} \right)\end{array}\)

Dễ dàng nhận thấy \(AC'BD'\) là hình chữ nhật và \(\angle \left( {AB;CD} \right) = \angle \left( {AB;C'D'} \right) = {30^0}\).

\( \Rightarrow {S_{AC'BD'}} = \frac{1}{2}AB.C'D'.\sin {30^0} = \frac{1}{2}.6.6.\frac{1}{2} = 9\,\,\left( {c{m^2}} \right)\)

Lại có \(V = AA'.{S_{AC'BD'}} \Rightarrow AA' = \frac{V}{{{S_{AC'BD'}}}} = \frac{{90}}{9} = 10\,\,\left( {cm} \right)\) = chiều cao của khối trụ \(\left( T \right)\).

Vậy thể tích khối trụ \(\left( T \right)\) là: \(V = \pi {r^2}h = \pi {.3^2}.10 = 90\pi \,\,\left( {c{m^3}} \right)\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com