Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Có bao nhiêu giá trị nguyên trong tập giá trị của hàm số \(y = \dfrac{{{{\sin }^2}x - 2\sin 2x +

Câu hỏi số 305186:
Vận dụng

Có bao nhiêu giá trị nguyên trong tập giá trị của hàm số \(y = \dfrac{{{{\sin }^2}x - 2\sin 2x + 1}}{{\cos 2x + 2\sin 2x - 3}}\)?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:305186
Phương pháp giải

- Tìm GTLN, GTNN của hàm số (sử dụng điều kiện có nghiệm của phương trình thuần nhất đối với \(\sin \) và \(\cos \)) suy ra tập giá trị.

- Tìm các giá trị nguyên của \(y\) nằm trong tập giá trị.

Giải chi tiết

Điều kiện: \(\cos 2x + 2\sin 2x - 3 \ne 0\) (luôn đúng).

\(y = \dfrac{{{{\sin }^2}x - 2\sin 2x + 1}}{{\cos 2x + 2\sin 2x - 3}} = \dfrac{{\dfrac{{1 - \cos 2x}}{2} - 2\sin 2x + 1}}{{\cos 2x + 2\sin 2x - 3}} = \dfrac{{ - \cos 2x - 4\sin 2x + 3}}{{2\cos 2x + 4\sin 2x - 6}}\)

\( \Leftrightarrow y\left( {2\cos 2x + 4\sin 2x - 6} \right) =  - \cos 2x - 4\sin 2x + 3\) \( \Leftrightarrow \left( {2y + 1} \right)\cos 2x + \left( {4y + 4} \right)\sin 2x = 6y + 3\)

Phương trình có nghiệm \( \Leftrightarrow {\left( {2y + 1} \right)^2} + {\left( {4y + 4} \right)^2} \ge {\left( {6y + 3} \right)^2}\)

\( \Leftrightarrow 4{y^2} + 4y + 1 + 16{y^2} + 32y + 16 \ge 36{y^2} + 36y + 9 \Leftrightarrow 16{y^2} + 8 \le 0 \Leftrightarrow Vo\,\,nghiem\)  .

Vậy không có giá trị nguyên của \(y\) trong tập giá trị của hàm số.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com