Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} - 9x

Câu hỏi số 309560:
Vận dụng

Gọi \(S\) là tập hợp các giá trị thực của tham số \(m\) sao cho phương trình \({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}}\) có đúng hai nghiệm thực. Tính tổng các phần tử của \(S\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:309560
Phương pháp giải

Biến đổi phương trình đã cho về dạng \(f\left( u \right) = f\left( v \right)\) rồi sử dụng phương pháp hàm số.

Giải chi tiết

Ta có:

\({x^9} + 3{x^3} - 9x = m + 3\sqrt[3]{{9x + m}} \Leftrightarrow {x^9} + 3{x^3} = 9x + m + 3\sqrt[3]{{9x + m}} \\ \Leftrightarrow {\left( {{x^3}} \right)^3} + 3{x^3} = {\left( {\sqrt[3]{{9x + m}}} \right)^3} + 3\sqrt[3]{{9x + m}}\)

Xét hàm \(g\left( t \right) = {t^3} + 3t \Rightarrow g'\left( t \right) = 3{t^2} + 3 > 0,\forall t\) nên hàm số \(g\left( t \right)\) đồng biến trên \(\mathbb{R}\).

Suy ra \(g\left( {{x^3}} \right) = g\left( {\sqrt[3]{{9x + m}}} \right) \Leftrightarrow {x^3} = \sqrt[3]{{9x + m}} \Leftrightarrow {x^9} = 9x + m \Leftrightarrow {x^9} - 9x = m\).

Xét hàm \(f\left( x \right) = {x^9} - 9x\) trên \(\mathbb{R}\) có \(f'\left( x \right) = 9{x^8} - 9 = 0 \Leftrightarrow x =  \pm 1\).

Bảng biến thiên:

Từ bảng biến thiên ta thấy, phương trình đã cho có đúng hai nghiệm \( \Leftrightarrow \left[ \begin{array}{l}m = 8\\m =  - 8\end{array} \right.\).

Vậy \(S = \left\{ { - 8;8} \right\}\) hay tổng các phần tử của \(S\) bằng \(0\).

Chọn D. 

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com