Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}}\,\,\,khi\,x \ne 1\\m - 2\,\,\,\,khi\,x =

Câu hỏi số 312412:
Thông hiểu

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\dfrac{{{x^2} - 1}}{{x - 1}}\,\,\,khi\,x \ne 1\\m - 2\,\,\,\,khi\,x = 1\end{array} \right.\). Tìm \(m\) để hàm số \(f(x)\) liên tục trên \(\mathbb{R}\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:312412
Phương pháp giải

Hàm số \(y = f\left( x \right)\) liên tục tại điểm \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Giải chi tiết

TXĐ: \(D = \mathbb{R}\). Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 2\\f\left( 1 \right) = m - 2\end{array}\)

Hàm số liên tục trên \(\mathbb{R} \Leftrightarrow \) Hàm số liên tục tại \(x = 1 \Rightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).

\( \Leftrightarrow m - 2 = 2 \Leftrightarrow m = 4\).

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com