Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(A,\,\,B,\,\,C\) lần lượt là các điểm biểu diễn của các số phức \(4 - 3i,\,\,\left( {1 + 2i}

Câu hỏi số 313437:
Thông hiểu

Cho \(A,\,\,B,\,\,C\) lần lượt là các điểm biểu diễn của các số phức \(4 - 3i,\,\,\left( {1 + 2i} \right)i,\,\,\dfrac{1}{i}\). Số phức có điểm biểu diễn \(D\) sao cho \(ABCD\) là hình bình hành là :

Đáp án đúng là: C

Quảng cáo

Câu hỏi:313437
Phương pháp giải

+) Số phức \(z = a + bi\) có điểm biểu diễn là \(M\left( {a;b} \right) \Rightarrow \) Tọa độ các điểm \(A,\,\,B,\,\,C\).

+) \(ABCD\) là hình bình hành \( \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC} \).

Giải chi tiết

Ta có: \(\left( {1 + 2i} \right)i =  - 2 + i,\,\,\dfrac{1}{i} =  - i\)

\( \Rightarrow A\left( {4; - 3} \right);\,\,B\left( { - 2;1} \right);\,\,C\left( {0; - 1} \right)\).

\(ABCD\) là hình bình hành \( \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC}  \Leftrightarrow \left\{ \begin{array}{l} - 2 - 4 = 0 - {x_D}\\1 + 3 =  - 1 - {y_D}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 6\\{y_D} =  - 5\end{array} \right.\).

Vậy số phức có điểm biểu diễn \(D\) là \(z = 6 - 5i\).

Chú ý khi giải

Chú ý: Nhiều HS nhầm điều kiện \(ABCD\) là hình bình hành \( \Leftrightarrow \overrightarrow {AB}  = \overrightarrow {CD} \).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com