Tính \(I = \mathop {\lim }\limits_{x \to 1} \frac{{2x - \sqrt {x + 3} }}{{{x^2} - 1}}\) có giá trị ?
Tính \(I = \mathop {\lim }\limits_{x \to 1} \frac{{2x - \sqrt {x + 3} }}{{{x^2} - 1}}\) có giá trị ?
Đáp án đúng là: C
Quảng cáo
Nhân liên hợp để khử dạng \(\frac{0}{0}\) rồi tính giới hạn của biểu thức.
\(\begin{array}{l}\frac{{2x - \sqrt {x + 3} }}{{{x^2} - 1}} = \frac{{\left( {2x - \sqrt {x + 3} } \right)\left( {2x + \sqrt {x + 3} } \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2x + \sqrt {x + 3} } \right)}} = \frac{{4{x^2} - x - 3}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2x + \sqrt {x + 3} } \right)}}\\ = \frac{{\left( {x - 1} \right)\left( {4x + 3} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)\left( {2x + \sqrt {x + 3} } \right)}} = \frac{{4x + 3}}{{\left( {x + 1} \right)\left( {2x + \sqrt {x + 3} } \right)}}\end{array}\)
Đáp án cần chọn là: C
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












