Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {4{x^2} - 2x + 1} - \sqrt {1 - 2x} }}{x}\) có
Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {4{x^2} - 2x + 1} - \sqrt {1 - 2x} }}{x}\) có kết quả là:
Đáp án đúng là: D
Quảng cáo
Thêm bớt, nhân liên hợp và rút gọn biểu thức để khử dạng \(\frac{0}{0}\) rồi tính giới hạn của biểu thức.
\(\begin{array}{l}\frac{{\sqrt {4{x^2} - 2x + 1} - \sqrt {1 - 2x} }}{x} = \frac{{\sqrt {4{x^2} - 2x + 1} - 1}}{x} - \frac{{\sqrt {1 - 2x} - 1}}{x}\\ = \frac{{\left( {\sqrt {4{x^2} - 2x + 1} - 1} \right)\left( {\sqrt {4{x^2} - 2x + 1} + 1} \right)}}{{x\left( {\sqrt {4{x^2} - 2x + 1} + 1} \right)}} - \frac{{\left( {\sqrt {1 - 2x} - 1} \right)\left( {\sqrt {1 - 2x} + 1} \right)}}{{x\left( {\sqrt {1 - 2x} + 1} \right)}}\\ = \frac{{4{x^2} - 2x}}{{x\left( {\sqrt {4{x^2} - 2x + 1} + 1} \right)}} + \frac{{2x}}{{x\left( {\sqrt {1 - 2x} + 1} \right)}} = \frac{{4x - 2}}{{\sqrt {4{x^2} - 2x + 1} + 1}} + \frac{2}{{\sqrt {1 - 2x} + 1}}.\end{array}\)
Đáp án cần chọn là: D
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












