Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho \(A\left( {2;1;0} \right),\,\,B\left( { - 2;3;2} \right),\,\,\left( \Delta  \right):\dfrac{{x - 1}}{2} =

Câu hỏi số 317341:
Vận dụng

Cho \(A\left( {2;1;0} \right),\,\,B\left( { - 2;3;2} \right),\,\,\left( \Delta  \right):\dfrac{{x - 1}}{2} = \dfrac{y}{1} = \dfrac{z}{{ - 2}}\). Mặt cầu \(\left( S \right)\) có tâm \(I \in \left( \Delta  \right)\) và đi qua \(A,\,\,B\). Tìm \(I\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:317341
Giải chi tiết

* Giả sử \(I\left( {a;b;c} \right) \in \left( \Delta  \right) \Rightarrow \dfrac{{a - 1}}{2} = \dfrac{b}{1} = \dfrac{c}{{ - 2}} \Leftrightarrow \left\{ \begin{array}{l}a - 2b - 1 = 0\,\,\left( 1 \right)\\2b + c = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\)

\(\begin{array}{l}*\,\,IA = IB \Leftrightarrow I{A^2} = I{B^2} \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b - 1} \right)^2} + {c^2} = {\left( {a + 2} \right)^2} + {\left( {b - 3} \right)^2} + {\left( {c - 2} \right)^2}\\ \Leftrightarrow  - 4a + 4 - 2b + 1 = 4a + 4 - 6b + 9 - 4c + 4\\ \Leftrightarrow 8a - 4b - 4c + 12 = 0 \Leftrightarrow 2a - b - c + 3 = 0\,\,\left( 3 \right)\end{array}\)

* Giải hệ (1),(2),(3) \( \Rightarrow I\left( { - 1; - 1;2} \right)\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com