Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, \(AB = 3a,BC = 4a\). Cạnh bên SA vuông góc với

Câu hỏi số 320268:
Vận dụng

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, \(AB = 3a,BC = 4a\). Cạnh bên SA vuông góc với mặt phẳng đáy. Góc tạo giữa SC và mặt phẳng đáy bằng \({60^0}\). Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng ABSM bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:320268
Phương pháp giải

Muốn tính khoảng cách giữa hai đường thẳng chéo nhau a và b, ta xác định mặt phẳng (P) chứa b và song song với a. Khi đó: \(d\left( {a;b} \right) = d\left( {a;\left( P \right)} \right) = d\left( {A;\left( P \right)} \right),\,\left( {A \in a} \right)\).

Giải chi tiết

 

Gọi N là trung điểm của BC, dựng hình bình hành ABNP.

Ta có: \(AB//NP,\,\,AB \not\subset \left( {SPN} \right) \Rightarrow AB//\left( {SPN} \right)\). Mà \(SM \subset \left( {SPN} \right) \Rightarrow d\left( {AB;SM} \right) = d\left( {AB;\left( {SPN} \right)} \right) = d\left( {A;\left( {SPN} \right)} \right)\)

Kẻ \(AH \bot SP,\,\,\left( {H \in SP} \right)\) (1)

Ta có: \(BC \bot AB,\,\,BC \bot SA \Rightarrow BC \bot \left( {SAB} \right)\). Mà \(AP//BC \Rightarrow AP \bot \left( {SAB} \right) \Rightarrow AP \bot AB\)

Mặt khác: \(SA \bot AB \Rightarrow AB \bot \left( {SAP} \right) \Rightarrow AB \bot AH\)(2)

Từ (1), (2) suy ra \(d\left( {A;\left( {SPN} \right)} \right) = AH \Rightarrow d\left( {AB;SM} \right) = AH\)

\(\Delta ABC\) vuông tại B \( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{{\left( {3a} \right)}^2} + {{\left( {4a} \right)}^2}}  = 5a\)

\(SA \bot \left( {ABC} \right) \Rightarrow \left( {\widehat {SC;\left( {ABC} \right)}} \right) = \widehat {SCA} = {60^0}\)

\(\Delta SAC\) vuông tại A \( \Rightarrow SA = AC.\tan \widehat C = 5a.\tan {60^0} = 5a\sqrt 3 \)

\(AP = BN = \dfrac{{BC}}{2} = \dfrac{{4a}}{2} = 2a\)

\(\Delta SAP\) vuông tại A có\(AH \bot SP \Rightarrow \dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{P^2}}} = \dfrac{1}{{75{a^2}}} + \dfrac{1}{{4{a^2}}} = \dfrac{{79}}{{300{a^2}}} \Rightarrow AH = \dfrac{{10\sqrt 3 a}}{{\sqrt {79} }}\)\( \Rightarrow d\left( {AB;SM} \right) = \dfrac{{10\sqrt 3 a}}{{\sqrt {79} }}\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com