Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) có khoảng cách giữa AB và A’D bằng 2, đường

Câu hỏi số 320279:
Vận dụng

Cho khối lăng trụ tứ giác đều \(ABCD.A'B'C'D'\) có khoảng cách giữa ABA’D bằng 2, đường chéo của mặt bên bằng 5. Biết \(A'A > AD\). Thể tích lăng trụ là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:320279
Phương pháp giải

Khối lăng trụ tứ giác đều có đáy là hình vuông, các mặt bên là hình chữ nhật.

Giải chi tiết

 

 

Kẻ \(AH \bot A'D,\,\left( {H \in A'D} \right)\). Ta có:  \(AB \bot AD,\,\,AB \bot AA' \Rightarrow AB \bot \left( {ABB'A'} \right) \Rightarrow AB \bot AH\)

\( \Rightarrow d\left( {AB;A'D} \right) = AH = 2\)

Gọi độ dài đoạn AD là x

\(\Delta ADA'\) vuông tại A, \(AH \bot A'D\,\, \Rightarrow AD.AA' = AH.A'D \Leftrightarrow AA' = \dfrac{{AH.A'D}}{{AD}} = \dfrac{{2.5}}{x} = \dfrac{{10}}{x}\)

Lại có: \(A{D^2} + AA{'^2} = A'{D^2} \Leftrightarrow {x^2} + {\left( {\dfrac{{10}}{x}} \right)^2} = {5^2} \Leftrightarrow {x^4} - 25{x^2} + 100 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{x^2} = 20\\{x^2} = 5\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\sqrt 5 \\x = \sqrt 5 \end{array} \right.\)

Do \(A'A > AD\) nên \(AD = \sqrt 5 ,\,\,AA' = 2\sqrt 5 \)

Thể tích lăng trụ là: \(V = A{D^2}.AA' = 5.2\sqrt 5  = 10\sqrt 5 \).

 

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com