Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và hàm \(y = f'\left( x

Câu hỏi số 320278:
Vận dụng

Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và hàm \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Xét hàm số \(g\left( x \right) = f\left( {{x^2} - 5} \right)\). Khẳng định nào dưới đây khẳng định đúng?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:320278
Phương pháp giải

Lập bảng xét dấu của \(g'\left( x \right)\) từ đó đánh giá khoảng đồng biến, nghịch biến của hàm số \(g\left( x \right)\).

Giải chi tiết

\(g\left( x \right) = f\left( {{x^2} - 5} \right) \Rightarrow g'\left( x \right) = 2x.f'\left( {{x^2} - 5} \right)\)

\(f'\left( {{x^2} - 5} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} - 5 =  - 1\\{x^2} - 5 = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  \pm 2\\x =  \pm \sqrt 7 \end{array} \right.\)

Bảng xét dấu \(g'\left( x \right)\):

\( \Rightarrow \) Hàm số \(g\left( x \right)\) đồng biến trên khoảng \(\left( { - 2;0} \right)\): Là khẳng định đúng.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com