Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} =
Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{z - 6}}{{ - 2}}\) và \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) . Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là:
Đáp án đúng là: B
Quảng cáo
+ Xác định 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]\) với \(\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} \) là VTCP của \({d_1};{d_2}.\)
+ Lấy điểm \(M \in {d_1} \Rightarrow M \in \left( P \right)\)
+ Viết phương trình mặt phẳng \(\left( P \right)\) qua \(M\) và nhận \(\overrightarrow n \) là VTPT
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












