Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} =

Câu hỏi số 320471:
Thông hiểu

Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{z - 6}}{{ - 2}}\)  và \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) . Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:320471
Phương pháp giải

+ Xác định 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]\)  với \(\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} \) là VTCP của \({d_1};{d_2}.\)

+ Lấy điểm \(M \in {d_1} \Rightarrow M \in \left( P \right)\)

+ Viết phương trình mặt phẳng \(\left( P \right)\) qua \(M\) và nhận \(\overrightarrow n \) là VTPT

Giải chi tiết

Đường thẳng \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{x - 6}}{{ - 2}}\) đi qua \(M\left( {2; - 2;6} \right)\) và có VTCP \(\overrightarrow {{u_1}}  = \left( {2;1; - 2} \right)\)

Đường thẳng \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) có VTCP \(\overrightarrow {{u_2}}  = \left( {1; - 2;3} \right)\)

Vì mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) nên 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( { - 1; - 8; - 5} \right)\)

Phương trình mặt phẳng \(\left( P \right): - 1\left( {x - 2} \right) - 8\left( {y + 2} \right) - 5\left( {z - 6} \right) = 0\) \( \Leftrightarrow x + 8y + 5 - 16 = 0\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com