Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có đáy làm tam giác đều cạnh \(a,AA' = 2a\). Gọi \(\alpha

Câu hỏi số 320492:
Vận dụng

Cho lăng trụ tam giác đều \(ABC.A'B'C'\) có đáy làm tam giác đều cạnh \(a,AA' = 2a\). Gọi \(\alpha \) là góc giữa \(AB'\) và \(BC'\). Tính \(\cos \alpha \).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:320492
Phương pháp giải

- Gọi \(M,N,P\) lần lượt là trung điểm của \(AB,BB',B'C'\).

- Sử dụng tính chất góc giữa hai đường thẳng chéo nhau bằng góc giữa hai đường thẳng cùng thuộc 1 mặt phẳng mà lần lượt song song với hai đường thẳng đã cho.

Giải chi tiết

Gọi \(M,N,P\) lần lượt là trung điểm của \(AB,BB',B'C'\).

Ta có: \(MN//AB'\) và \(NP//BC'\) (đường trung bình trong tam giác)

Do đó góc giữa hai đường thẳng \(AB'\) và \(BC'\) bằng góc giữa hai đường thẳng \(MN\) và \(NP\).

Gọi \(Q\) là trung điểm của \(A'B'\) thì \(MQ \bot \left( {A'B'C'} \right) \Rightarrow MQ \bot QP\).

Tam giác \(MQP\) có \(MQ = AA' = 2a,\,\,QP = \dfrac{1}{2}A'C' = \dfrac{a}{2}\) \( \Rightarrow MP = \sqrt {M{Q^2} + Q{P^2}}  = \sqrt {4{a^2} + \dfrac{{{a^2}}}{4}}  = \dfrac{{a\sqrt {17} }}{2}\)

Lại có \(MN = \dfrac{1}{2}AB' = \dfrac{1}{2}\sqrt {A{B^2} + BB{'^2}}  = \dfrac{1}{2}\sqrt {{a^2} + 4{a^2}}  = \dfrac{{a\sqrt 5 }}{2}\); \(NP = \dfrac{1}{2}BC' = \dfrac{1}{2}\sqrt {BB{'^2} + B'C{'^2}}  = \dfrac{1}{2}\sqrt {4{a^2} + {a^2}}  = \dfrac{{a\sqrt 5 }}{2}\)

Áp dụng định lý hàm số cô sin trong tam giác \(MNP\) ta có:

\(\cos \widehat {MNP} = \dfrac{{M{N^2} + N{P^2} - M{P^2}}}{{2MN.NP}} = \dfrac{{\dfrac{{5{a^2}}}{4} + \dfrac{{5{a^2}}}{4} - \dfrac{{17{a^2}}}{4}}}{{2.\dfrac{{a\sqrt 5 }}{2}.\dfrac{{a\sqrt 5 }}{2}}} =  - \dfrac{7}{{10}} < 0\)

Do đó góc giữa hai đường thẳng \(MN\) và \(NP\) thỏa mãn \(\cos \widehat {\left( {MN,MP} \right)} = \dfrac{7}{{10}}\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com