Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\) với \(AC = \dfrac{3}{2}AD,\,\,\angle CAB = \angle DAB = {60^0},\,\,CD = AD\). Gọi

Câu hỏi số 321297:
Vận dụng

Cho tứ diện \(ABCD\) với \(AC = \dfrac{3}{2}AD,\,\,\angle CAB = \angle DAB = {60^0},\,\,CD = AD\). Gọi \(\varphi \) là góc giữa \(AB\) và \(CD\). Chọn khẳng định đúng?

Đáp án đúng là: A

Quảng cáo

Câu hỏi:321297
Phương pháp giải

Sử dụng công thức \(\cos \left( {\overrightarrow a ;\overrightarrow b } \right) = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}}\).

Giải chi tiết

Đặt \(AD = x \Rightarrow AC = \dfrac{3}{2}x,\,\,CD = x\).

Ta có:

\(\begin{array}{l}\overrightarrow {AB} .\overrightarrow {CD}  = \overrightarrow {AB} \left( {\overrightarrow {AD}  - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {AD}  - \overrightarrow {AB} .\overrightarrow {AC} \\ = AB.AD.\cos \angle DAB - AB.AC.\cos \angle CAB\\ = AB.x.\cos {60^0} - AB.\dfrac{3}{2}x.\cos {60^0}\\ = AB.x.\dfrac{1}{2} - AB.\dfrac{3}{2}x.\dfrac{1}{2} =  - \dfrac{1}{4}AB.x\end{array}\)

Khi đó ta có \(\cos \left( {\overrightarrow {AB} ;\overrightarrow {CD} } \right) = \dfrac{{\overrightarrow {AB} .\overrightarrow {CD} }}{{AB.CD}} = \dfrac{{ - \dfrac{1}{4}AB.x}}{{AB.x}} =  - \dfrac{1}{4} < 0\).

Vậy \(\cos \left( {AB;CD} \right) = \dfrac{1}{4} \Rightarrow \cos \varphi  = \dfrac{1}{4}\).

Chú ý khi giải

Góc giữa 2 đường thẳng là góc nhọn nên cosin của góc giữa 2 đường thẳng là số dương.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com