Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(H\left( {1;\,2; - 2} \right).\) Mặt phẳng \(\left(

Câu hỏi số 322533:
Vận dụng

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(H\left( {1;\,2; - 2} \right).\) Mặt phẳng \(\left( \alpha  \right)\) đi qua \(H\) và cắt các trục \(Ox,\,\,Oy,\,\,Oz\) lần lượt tại các điểm \(A,\,B,\,C\) sao cho \(H\) là trực tâm của \(\Delta ABC.\) Tính diện tích mặt cầu ngoại tiếp tứ diện \(OABC.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:322533
Phương pháp giải

Gọi tọa độ các điểm A, B, C.

Lập phương trình mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz bằng phương trình đoạn chắn.

Từ đó tìm được các điểm A, B, C. Từ đó tính được bán kính mặt cầu ngoại tiếp tứ diện OABC.

Công thức tính diện tích mặt cầu bán kính \(R:\,\,S = 4\pi {R^2}.\)

Giải chi tiết

Cách giải:

Gọi \(A\left( {a;\,\,0;\,\,0} \right),\,\,B\left( {0;\,b;\,0} \right),\,\,C\left( {0;\,0;\,c} \right)\) lần lượt thuộc các trục tọa độ \(Ox,\,Oy,\,Oz.\)

Khi đó ta có phương trình  \(\left( \alpha  \right)\) đi qua các điểm \(A,\,\,B,\,\,C:\,\,\,\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.\)

\(H \in \left( \alpha  \right) \Rightarrow \frac{1}{a} + \frac{2}{b} - \frac{2}{c} = 1\,\,\,\,\,\left( 1 \right)\)

Theo đề bài ta có \(H\) là trực tâm \(\Delta ABC \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH}  \bot \overrightarrow {BC} \\\overrightarrow {BH}  \bot \overrightarrow {AC} \end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\end{array} \right..\)

Ta có: \(\left\{ \begin{array}{l}\overrightarrow {AH}  = \left( {1 - a;\,\,2; - 2} \right),\,\,\overrightarrow {BC}  = \left( {0; - b;\,\,c} \right)\\\overrightarrow {BH}  = \left( {1;\,2 - b; - 2} \right),\,\,\,\overrightarrow {AC}  = \left( { - a;\,0;\,c} \right)\end{array} \right.\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH} .\overrightarrow {BC}  = 0\\\overrightarrow {BH} .\overrightarrow {AC}  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2b - 2c = 0\\ - a - 2c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 2c\\b =  - c\end{array} \right.\\ \Rightarrow \left( 1 \right) \Leftrightarrow \frac{1}{{ - 2c}} + \frac{2}{{ - c}} - \frac{2}{c} = 1 \Rightarrow  - \frac{9}{{2c}} = 1 \Leftrightarrow c =  - \frac{9}{2}\\ \Rightarrow \left\{ \begin{array}{l}a =  - 2c = 9\\b =  - c = \frac{9}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {9;\,\,0;\,\,0} \right)\\B\left( {0;\,\frac{9}{2};\,0} \right)\\C\left( {0;\,0; - \frac{9}{2}} \right)\end{array} \right..\end{array}\)

Gọi \(I\left( {{x_0};\,{y_0};\,{z_0}} \right)\) là tâm mặt cầu ngoại tiếp hình chóp tứ giác \(OABC.\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com