Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(a\) và \(b\) là các số thực khác 0. Tìm hệ thức liên hệ giữa \(a\)và \(b\) để hàm số 

Câu hỏi số 322719:
Vận dụng

Cho \(a\) và \(b\) là các số thực khác 0. Tìm hệ thức liên hệ giữa \(a\)và \(b\) để hàm số  \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {ax + 1}  - 1}}{x}\,\,\,\,{\rm{khi}}\,\,x \ne \,0\\4{x^{2019}} + 5b\,\,\,\,\,\,{\rm{khi}}\,\,x = 0\end{array} \right.\) liên tục tại \(x = 0\) .

Đáp án đúng là: B

Quảng cáo

Câu hỏi:322719
Phương pháp giải

Tính  \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\) và \(f\left( 0 \right)\) .

Giải chi tiết

Hàm số đã cho luôn xác định và liên tục với mọi \(x \in \mathbb{R}\backslash \left\{ 0 \right\}.\)

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {ax + 1}  - 1}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt {ax + 1}  - 1} \right)\left( {\sqrt {ax + 1}  + 1} \right)}}{{x\left( {\sqrt {ax + 1}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{{ax}}{{x\left( {\sqrt {ax + 1}  + 1} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{a}{{\left( {\sqrt {ax + 1}  + 1} \right)}} = \frac{a}{2}\\f\left( 0 \right) = 4 \cdot {0^{2019}} + 5b = 5b.\end{array}\)

Để hàm số liên tục tại \(x = 0\) thì:  \(\frac{a}{2} = 5b \Leftrightarrow a = 10b\)

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com