Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3x + 1\,\,\,\,\,{\rm{khi}}\,\,\,x \ge  - 1\\x +

Câu hỏi số 323628:
Thông hiểu

Hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3x + 1\,\,\,\,\,{\rm{khi}}\,\,\,x \ge  - 1\\x + a\,\,\,\,\,\,\,{\rm{khi}}\,\,\,\,x <  - 1\end{array} \right.\)  liên tục trên \(\mathbb{R}\) nếu \(a\)  bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:323628
Phương pháp giải

Xét tính liên tục hàm số tại \(x =  - 1\)

Hàm số \(y = f\left( x \right)\)  liên tục tại điểm \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right).\)  

Giải chi tiết

Ta có hàm số luôn xác định và liên tục trên \(\left( { - \infty ; - 1} \right) \cup \left( { - 1; + \infty } \right).\)

Xét tính liên tục của hàm số tại điểm \(x =  - 1.\) Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {3x + 1} \right) =  - 2;\,\,f\left( { - 1} \right) =  - 2.\\\mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + a} \right) = a - 1\end{array}\)

Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số liên tục tại \(x =  - 1 \Leftrightarrow a - 1 =  - 2 \Leftrightarrow a =  - 1.\)

Chọn A.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com