Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin

Câu hỏi số 323633:
Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \frac{2}{x}\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,\,x > 0\\a\cos x - 5\,\,\,\,\,{\rm{khi}}\,\,\,x \le 0\end{array} \right.\) . Tìm tất cả các giá trị của tham số thực \(a\) để hàm số liên tục trên \(\mathbb{R}\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:323633
Phương pháp giải

Xét tính liên tục của hàm số tại \(x = 0.\)

Hàm số \(y = f\left( x \right)\)  liên tục tại điểm \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = f\left( {{x_0}} \right).\)  

Giải chi tiết

Hàm số đã cho liên tục trên các khoảng  và   .

Ta có: \(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} \left( {a\cos x - 5} \right) = a - 5;\,\,\,f\left( 0 \right) = a - 5.\)   

Ta có với mọi \(x:\,\,\left| {x\sin \frac{2}{x}} \right| \le \left| x \right| \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {x\sin \frac{2}{x}} \right) = 0.\) 

Hàm số đã cho liên tục trên \(\mathbb{R} \Leftrightarrow \)  hàm số liên tục tại  \(x = 0 \Leftrightarrow a - 5 = 0 \Leftrightarrow a = 5.\) 

Đáp án cần chọn là: B

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com