Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \(\left( \alpha  \right)\) có phương trình \(2x +

Câu hỏi số 324105:
Thông hiểu

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \(\left( \alpha  \right)\) có phương trình \(2x + y - z - 1 = 0\) và mặt cầu (S) có phương trình \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\). Xác định bán kính r của đường tròn là giao tuyến của \(\left( \alpha  \right)\) và mặt cầu (S).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:324105
Phương pháp giải

Sử dụng mối quan hệ \({d^2} + {r^2} = {R^2}\).

Trong đó, \(d\): khoảng cách từ tâm O đến mặt phẳng (P),

                  \(r\): bán kính đường tròn là giao tuyến của mặt cầu (S) và mặt phẳng (P),

           \(R\): bán kính hình cầu. 

Giải chi tiết

Mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\) có tâm \(I\left( {1;1; - 2} \right)\), bán kính \(R = 2\)

 \(d = d\left( {I;\left( \alpha  \right)} \right) = \dfrac{{\left| {2.1 + 1 - \left( { - 2} \right) - 1} \right|}}{{\sqrt {{2^2} + {1^2} + {1^2}} }} = \dfrac{4}{{\sqrt 6 }} = \dfrac{{2\sqrt 6 }}{3}\)

Ta có: \({d^2} + {r^2} = {R^2} \Leftrightarrow {\left( {\dfrac{{2\sqrt 6 }}{3}} \right)^2} + {r^2} = {2^2} \Leftrightarrow {r^2} = \dfrac{4}{3} \Leftrightarrow r = \dfrac{{2\sqrt 3 }}{3}\).

Bán kính r của đường tròn là giao tuyến của \(\left( \alpha  \right)\) và mặt cầu \(\left( S \right)\) là \(r = \dfrac{{2\sqrt 3 }}{3}\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com