Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Phương trình \(x\cos x - {x^2} + 1 = 0\) có nghiệm thuộc khoảng nào? 

Câu hỏi số 328221:
Thông hiểu

Phương trình \(x\cos x - {x^2} + 1 = 0\) có nghiệm thuộc khoảng nào? 

Đáp án đúng là: C

Quảng cáo

Câu hỏi:328221
Phương pháp giải

Đặt  \(f\left( x \right) = x\cos x - {x^2} + 1\) xét trên các khoảng.

Giải chi tiết

Đặt  \(f\left( x \right) = x\cos x - {x^2} + 1\) là hàm số liên tục trên \(\mathbb{R}.\)

Ta có: \(f\left( 1 \right) = \cos 1 > 0;\,\,\,\,f\left( 2 \right) = 2\cos 2 - 3 < 0 \Rightarrow f\left( 1 \right).f\left( 2 \right) < 0 \Rightarrow \) phương trình có ít nhất một nghiệm thuộc \(\left( {1;2} \right) \Rightarrow \)đáp án C đúng.

Với  \(x \in \left[ {0;1} \right]\) thì  \(f\left( x \right) = x\cos x + \left( {1 - {x^2}} \right) > 0 \Rightarrow f\left( x \right) = 0\)  vô nghiệm trong \(\left( {0;\,\,1} \right).\)

Với  \(\left| x \right| \ge 3\) thì  \(f\left( x \right) \le  - {x^2} + \left| {x\cos x} \right| + 1 = \left| x \right|\left[ {\left| {\cos x} \right| - 1} \right] - \left| x \right|\left[ {\left| {\frac{x}{2}} \right| - 1} \right] + \left[ {1 - \frac{{{x^2}}}{2}} \right] < 0\)

\( \Rightarrow f\left( x \right) = 0\)  vô nghiệm với mọi \(\left| x \right| \ge 3.\)

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com