Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) có \(AB = a,\,\,AD = 2a,\,\,SA\)

Câu hỏi số 332518:
Vận dụng

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật tâm \(O\) có \(AB = a,\,\,AD = 2a,\,\,SA\) vuông góc với đáy và \(SA = a\). Gọi \(\left( P \right)\) là mặt phẳng qua \(SO\) và vuông góc với \(\left( {SAD} \right)\). Diện tích thiết diện của \(\left( P \right)\) và hình chóp \(S.ABCD\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:332518
Phương pháp giải

Xác định thiết diện và tính diện tích.

Giải chi tiết

Trong \(\left( {ABCD} \right)\) qua \(O\) kẻ \(EF \bot AD\,\,\left( {E \in BC;\,\,F \in AD} \right)\). Khi đó \(\left( P \right) \equiv \left( {SEF} \right)\).

Ta có: \(\left\{ \begin{array}{l}EF \bot AF\\EF \bot SA\end{array} \right. \Rightarrow EF \bot \left( {SAD} \right) \Rightarrow EF \bot SF \Rightarrow \Delta SEF\) vuông tại \(F\).

Ta có: \(AF = \dfrac{1}{2}AD = a \Rightarrow SF = \sqrt {S{A^2} + A{F^2}}  = a\sqrt 2 \).

\( \Rightarrow {S_{SEF}} = \dfrac{1}{2}EF.SF = \dfrac{1}{2}a.a\sqrt 2  = \dfrac{{{a^2}\sqrt 2 }}{2}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com