Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm hệ số của x trong khai triển \({\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\) thành đa

Câu hỏi số 334550:
Vận dụng cao

Tìm hệ số của x trong khai triển \({\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\) thành đa thức:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:334550
Phương pháp giải

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^k}{b^{n - k}}} \).

Giải chi tiết

\(\begin{array}{l}{\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right) = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{{\left( {{x^2} + x} \right)}^k}{{.2}^{2 - k}}} \\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{2^{2 - k}}\sum\limits_{l = 0}^k {C_k^l{{\left( {{x^2}} \right)}^l}{x^{k - l}}} }  = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{2^{2 - k}}\sum\limits_{l = 0}^k {C_k^l{x^{k + l}}} } \end{array}\)

Số hạng chứa \(x\) trong khai triển trên là: \(C_2^0{2^2}.C_0^0x + C_2^1{.2^1}.C_1^0\).

Vậy hệ số của số hạng chứa \(x\) trong khai triển trên là: \(C_2^0{2^2}.C_0^0 + C_2^1{.2^1}.C_1^0 = 8\).

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com