Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD\) có \(\left( {ACD} \right) \bot \left( {BCD} \right),\,AC = AD = BC = BD = a,\,\,CD = 2x\).

Câu hỏi số 335328:
Vận dụng

Cho tứ diện \(ABCD\) có \(\left( {ACD} \right) \bot \left( {BCD} \right),\,AC = AD = BC = BD = a,\,\,CD = 2x\). Giá trị của x để hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {ABD} \right)\) vuông góc với nhau là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:335328
Phương pháp giải

Xác định góc giữa hai mặt phẳng \(\left( \alpha  \right),\,\,\left( \beta  \right):\)

- Tìm giao tuyến \(\Delta \) của \(\left( \alpha  \right),\,\,\left( \beta  \right)\).

- Xác định 1 mặt phẳng  \(\left( \gamma  \right) \bot \Delta \).

- Tìm các giao tuyến \(a = \left( \alpha  \right) \cap \left( \gamma  \right),b = \left( \beta  \right) \cap \left( \gamma  \right)\)

- Góc giữa hai mặt phẳng \(\left( \alpha  \right),\,\,\left( \beta  \right):\,\,\angle \left( {\left( \alpha  \right);\left( \beta  \right)} \right) = \angle \left( {a;b} \right).\)

Giải chi tiết

Gọi M là trung điểm của CD.

Do tam giác ACD và BCD là các tam giác cân tại A, B

\( \Rightarrow \left\{ \begin{array}{l}CD \bot AM\\CD \bot BM\end{array} \right. \Rightarrow CD \bot \left( {ABM} \right)\) và \(\angle \left( {\left( {ACD} \right);\left( {BCD} \right)} \right) = {90^0} = \angle AMB\)

Dễ dàng chứng minh được, \(\Delta ABC = \Delta ABD\left( {c.c.c} \right)\), dựng \(CI \bot AB\) tại I, suy ra  \(DI \bot AB\,\,\, \Rightarrow \angle \left( {\left( {ABC} \right);\left( {ABD} \right)} \right) = \angle CID = {90^0}\)

\( \Rightarrow \Delta ICD\) vuông cân tại  \(I \Rightarrow IM = CM = CD = \frac{{2x}}{2} = x\) (1)

Lại có: \(\Delta ABM\) vuông cân tại \(M,\,\,MI \bot AB\,\,\,\,\left( {do\,\,AB \bot \left( {ICD} \right)} \right)\)

\( \Rightarrow IM = \frac{{AM}}{{\sqrt 2 }} = \frac{{\sqrt {A{C^2} - C{M^2}} }}{{\sqrt 2 }} = \frac{{\sqrt {{a^2} - {x^2}} }}{{\sqrt 2 }}\) (2)

Từ (1), (2) suy ra: \(\frac{{\sqrt {{a^2} - {x^2}} }}{{\sqrt 2 }} = x \Leftrightarrow {a^2} - {x^2} = 2{x^2} \Leftrightarrow {x^2} = \frac{{{a^2}}}{3} \Leftrightarrow x = \frac{a}{{\sqrt 3 }}\).

Chọn: B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com