Trong không gian \(Oxyz,\) cho \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2},{d_2}:\left\{
Trong không gian \(Oxyz,\) cho \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2},{d_2}:\left\{ \begin{array}{l}x = 2 - t\\y = 3\\z = t\end{array} \right.\) . Phương trình mặt phẳng \(\left( P \right)\) sao cho \({d_1};{d_2}\) nằm về hai phía của \(\left( P \right)\) và \(\left( P \right)\) cách đều \({d_1};{d_2}.\)
Đáp án đúng là: A
Quảng cáo
Lập luận để có 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right]\) rồi suy ra phương trình tổng quát của mặt phẳng \(\left( P \right).\)
Sử dụng công thức khoảng cách \(d\left( {{d_1};\left( P \right)} \right) = d\left( {M;\left( P \right)} \right)\) với \({d_1}//\left( P \right);\,M \in {d_1}\)
Với điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và mặt phẳng \(\left( P \right):ax + by + z + d = 0\) thì \(d\left( {M;\left( P \right)} \right) = \frac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\)
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












