Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Nghiệm của bất phương trình \(\left( {{x^2} + x - 2} \right)\sqrt {2{x^2} - 1}  < 0\) là:

Câu hỏi số 343013:
Thông hiểu

Nghiệm của bất phương trình \(\left( {{x^2} + x - 2} \right)\sqrt {2{x^2} - 1}  < 0\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:343013
Phương pháp giải

\(AB < 0 \Leftrightarrow A,\,\,B\) trái dấu.

Giải chi tiết

ĐKXĐ: \(2{x^2} - 1 \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - \dfrac{1}{{\sqrt 2 }}\\x \ge \dfrac{1}{{\sqrt 2 }}\end{array} \right.\).

\(\left( {{x^2} + x - 2} \right)\sqrt {2{x^2} - 1}  < 0 \Leftrightarrow \left\{ \begin{array}{l}{x^2} + x - 2 < 0\\2{x^2} - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2 < x < 1\\x \ne  \pm \dfrac{1}{{\sqrt 2 }}\end{array} \right.\).

Kết hợp ĐK \( \Rightarrow x \in \left( { - 2;\dfrac{{ - 1}}{{\sqrt 2 }}} \right) \cup \left( {\dfrac{1}{{\sqrt 2 }};1} \right)\).

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com