Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} - 6x + 5 \le 0\\{x^2} - 2\left( {a + 1} \right)x + {a^2}

Câu hỏi số 343044:
Vận dụng cao

Cho hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} - 6x + 5 \le 0\\{x^2} - 2\left( {a + 1} \right)x + {a^2} + 1 \le 0\end{array} \right.\). Để hệ bất phương trình có nghiệm, giá trị thích hợp của tham số a là :

Đáp án đúng là: D

Quảng cáo

Câu hỏi:343044
Phương pháp giải

Xác định tập nghiệm \(\left( {{S_1}} \right),\,\,\left( {{S_2}} \right)\) của 2 bất phương trình, yêu cầu bài toán \( \Leftrightarrow {S_1} \cap {S_2} \ne \emptyset \).

Giải chi tiết

\(\left\{ \begin{array}{l}{x^2} - 6x + 5 \le 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\\{x^2} - 2\left( {a + 1} \right)x + {a^2} + 1 \le 0\,\,\left( 2 \right)\end{array} \right.\)

Giải (1): \({x^2} - 6x + 5 \le 0 \Leftrightarrow 1 \le x \le 5\).

Giải (2) : \(\Delta ' = {\left( {a + 1} \right)^2} - {a^2} - 1 = 2a\).

TH1: \(\Delta ' < 0 \Leftrightarrow a < 0 \Rightarrow \left( 2 \right)\) vô nghiệm nên hệ phương trình vô nghiệm.

TH2: \(\Delta ' = 0 \Leftrightarrow a = 0\), khi đó bất phương trình trở thành \({x^2} - 2x + 1 \le 0 \Leftrightarrow {\left( {x - 1} \right)^2} \le 0 \Leftrightarrow x = 1\).

\(HPT \Leftrightarrow \left\{ \begin{array}{l}1 \le x \le 5\\x = 1\end{array} \right. \Leftrightarrow x = 1\).

TH3: \(\Delta ' > 0 \Leftrightarrow a > 0\). Đặt \(f\left( x \right) = {x^2} - 2\left( {a + 1} \right)x + {a^2} + 1\).

Giả sử phương trình \(f\left( x \right) = 0\) có nghiệm \({x_1} < {x_2} \Rightarrow \) Tập nghiệm của bất phương trình (2) là \(\left[ {{x_1};{x_2}} \right]\).

Để hệ phương trình có nghiệm:

+) \({x_1} \le 5 \le {x_2} \Leftrightarrow \left( {{x_1} - 5} \right)\left( {{x_2} - 5} \right) \le 0 \Leftrightarrow {x_1}{x_2} - 5\left( {{x_1} + {x_2}} \right) + 25 \le 0\)

\( \Leftrightarrow {a^2} + 1 - 5.2\left( {a + 1} \right) + 25 \le 0 \Leftrightarrow {a^2} - 10a + 16 \le 0 \Leftrightarrow 2 \le a \le 8\).

+) \({x_1} \le 1 \le {x_2} \Leftrightarrow \left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \le 0 \Leftrightarrow {x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \le 0\).

\( \Leftrightarrow {a^2} + 1 - 2\left( {a + 1} \right) + 1 \le 0 \Leftrightarrow {a^2} - 2a \le 0 \Leftrightarrow 0 \le a \le 2\).

Kết hợp TH3 lại ta có \(0 < a \le 8\)

Kết hợp các TH và điều kiện ta có \(0 \le a \le 8\).

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com