Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({x^3} + \left( {m - 12} \right)\sqrt {4x - m}  = 4x\left( {\sqrt {4x - m}  - 3} \right)\),

Câu hỏi số 344434:
Vận dụng

Cho phương trình \({x^3} + \left( {m - 12} \right)\sqrt {4x - m}  = 4x\left( {\sqrt {4x - m}  - 3} \right)\), với \(m\) là tham số. Có bao nhiêu giá trị nguyên của m để phương trình đã cho có hai nghiệm thực phân biệt?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:344434
Phương pháp giải

Sử dụng phương pháp xét tính đơn điệu của hàm số.

Giải chi tiết

ĐKXĐ: \(x \ge \dfrac{m}{4}\)

Ta có: \({x^3} + \left( {m - 12} \right)\sqrt {4x - m}  = 4x\left( {\sqrt {4x - m}  - 3} \right) \Leftrightarrow {x^3} + 12x = \left( {4x - m} \right)\sqrt {4x - m}  + 12\sqrt {4x - m} \)

Xét hàm số \(f\left( t \right) = {t^3} + 12t,\,\,\,f'\left( t \right) = 3{t^2} + 12 > 0,\,\forall t \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}\)

\( \Rightarrow \left( * \right) \Leftrightarrow x = \sqrt {4x - m}  \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\{x^2} = 4x - m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\m = 4x - {x^2} = g\left( x \right)\end{array} \right.\)

Phương trình đã cho có hai nghiệm thực phân biệt \( \Leftrightarrow 0 \le m < 4 \Rightarrow m \in \left\{ {0;1;2;3} \right\}\): 4 giá trị thỏa mãn.

Chọn: B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com