Hình giải tích phẳng
Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD, A(−1;2). Gọi M, N lần lượt là trung điểm của AD và DC , E là giao điểm của BN với CM . Viết phương trình đường tròn ngoại tiếp tam giác BME biết BN :2x+y−8 = 0 và B có hoành độ lớn hơn 2.
Đáp án đúng là: C
Quảng cáo
Đáp án cần chọn là: C
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com


Đặt AB = a ,a > 0 Ta có AH đi qua trung điểm I của BC
a=4 =AB
BN => B(t;8-2t)
5t2-22t+21=0
B(3;2)
BN => J(-1;10)
BME vuông tại E, nên tâm đường tròn ngoại tiếp K là trung điêm BM => K(1;3), bán kính R=KB=











