Cho phương trình \({\log _9}{x^2} - {\log _3}\left( {6x - 1} \right) = - {\log _3}m\) (\(m\) là tham số
Cho phương trình \({\log _9}{x^2} - {\log _3}\left( {6x - 1} \right) = - {\log _3}m\) (\(m\) là tham số thực). Có tất cả bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho có nghiệm?
Đáp án đúng là: B
Quảng cáo
+ Tìm điều kiện: \({\log _a}f\left( x \right)\) xác định khi \(f\left( x \right) > 0\) với \(0 < a \ne 1\)
+ Sử dụng các công thức \(lo{g_a}{b^\alpha } = \alpha {\log _a}b;{\log _{{a^\alpha }}}b = \dfrac{1}{\alpha }{\log _a}b;\,{\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\,\,\left( {0 < a \ne 1;b,c > 0} \right)\) để đưa phương trình về dạng \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right)\)
+ Kết hợp điều kiện để tìm \(m.\)
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












