Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({\log _9}{x^2} - {\log _3}\left( {6x - 1} \right) =  - {\log _3}m\) (\(m\) là tham số

Câu hỏi số 351464:
Vận dụng

Cho phương trình \({\log _9}{x^2} - {\log _3}\left( {6x - 1} \right) =  - {\log _3}m\) (\(m\) là tham số thực). Có tất cả bao nhiêu giá trị nguyên của \(m\) để phương trình đã cho có nghiệm?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:351464
Phương pháp giải

+ Tìm điều kiện: \({\log _a}f\left( x \right)\) xác định khi \(f\left( x \right) > 0\) với \(0 < a \ne 1\)

+ Sử dụng các công thức \(lo{g_a}{b^\alpha } = \alpha {\log _a}b;{\log _{{a^\alpha }}}b = \dfrac{1}{\alpha }{\log _a}b;\,{\log _a}\left( {bc} \right) = {\log _a}b + {\log _a}c\,\,\left( {0 < a \ne 1;b,c > 0} \right)\) để đưa phương trình về dạng \({\log _a}f\left( x \right) = {\log _a}g\left( x \right) \Leftrightarrow f\left( x \right) = g\left( x \right)\)

+ Kết hợp điều kiện để tìm \(m.\)

Giải chi tiết

+) Điều kiện:

\(\left\{ \begin{array}{l}{x^2} > 0\\6x - 1 > 0\\m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x > \dfrac{1}{6}\\m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > \dfrac{1}{6}\\m > 0\end{array} \right.\,\,\left( * \right)\).

Với điều kiện \(\left( * \right)\) thì ta có

\({\log _9}{x^2} - {\log _3}\left( {6x - 1} \right) =  - {\log _3}m\)

\( \Leftrightarrow 2{\log _{{3^2}}}x + {\log _3}m = {\log _3}\left( {6x - 1} \right)\)

\( \Leftrightarrow {\log _3}x + {\log _3}m = {\log _3}\left( {6x - 1} \right)\)

\( \Leftrightarrow {\log _3}\left( {mx} \right) = {\log _3}\left( {6x - 1} \right)\)\( \Leftrightarrow mx = 6x - 1\)\( \Leftrightarrow \left( {m - 6} \right)x =  - 1\) \(\left( 1 \right)\)

Với \(m = 6\) thì phương trình \(\left( 1 \right)\) trở thành: \(0x =  - 1\,\left( {VN} \right)\). Vậy ta loại \(m = 6\).

Với \(m \ne 6\) thì \(\left( 1 \right) \Leftrightarrow x =  - \dfrac{1}{{m - 6}}\).

Để phương trình \(\left( 1 \right)\) có nghiệm thì \(x > \dfrac{1}{6} \Rightarrow  - \dfrac{1}{{m - 6}} > \dfrac{1}{6} \Leftrightarrow \dfrac{{ - 6 - m + 6}}{{6\left( {m - 6} \right)}} > 0\)

\( \Leftrightarrow \dfrac{{ - m}}{{m - 6}} > 0\)\( \Leftrightarrow \dfrac{m}{{m - 6}} < 0\)\( \Leftrightarrow 0 < m < 6\).

Mà \(m\) nguyên nên \(m \in \left\{ {1\,;\,2\,;\,3\,;\,4\,;\,5} \right\}\).

Vậy có \(5\) giá trị của \(m\) thỏa mãn đề bài.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com