Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Xác định \(m\) để phương trình \(\tan \dfrac{x}{2} = \dfrac{m}{{1 - 2m}}\,\,\left( {m \ne \dfrac{1}{2}}

Câu hỏi số 351812:
Vận dụng cao

Xác định \(m\) để phương trình \(\tan \dfrac{x}{2} = \dfrac{m}{{1 - 2m}}\,\,\left( {m \ne \dfrac{1}{2}} \right)\) có nghiệm \(x \in \left( {\dfrac{\pi }{2};\pi } \right)\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:351812
Phương pháp giải

Xác định tập giá trị của hàm số \(y = \tan \dfrac{x}{2}\) sau đó tìm \(m\) để phương trình có nghiệm.

Giải chi tiết

ĐK: \(\dfrac{x}{2} \ne \dfrac{\pi }{2} + k\pi  \Leftrightarrow x \ne \pi  + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

Với \(x \in \left( {\dfrac{\pi }{2};\pi } \right) \Rightarrow \dfrac{x}{2} \in \left( {\dfrac{\pi }{4};\dfrac{\pi }{2}} \right)\).

Do hàm số \(y = \tan X\) đồng biến trên \(\left( {\dfrac{\pi }{4};\dfrac{\pi }{2}} \right)\) nên ta có:

\(\dfrac{\pi }{4} < \dfrac{x}{2} < \dfrac{\pi }{2} \Leftrightarrow \tan \dfrac{\pi }{4} < \tan \dfrac{x}{2} < \tan \dfrac{\pi }{2} \Leftrightarrow 1 < \tan \dfrac{x}{2} <  + \infty \).

Suy ra phương trình \(\tan \dfrac{x}{2} = \dfrac{m}{{1 - 2m}}\,\,\left( {m \ne \dfrac{1}{2}} \right)\) có nghiệm khi và chỉ khi

\(\dfrac{m}{{1 - 2m}} > 1 \Leftrightarrow \dfrac{m}{{1 - 2m}} - 1 > 0 \Leftrightarrow \dfrac{{m - 1 + 2m}}{{1 - 2m}} > 0 \Leftrightarrow \dfrac{{3m - 1}}{{1 - 2m}} > 0 \Leftrightarrow \dfrac{1}{3} < m < \dfrac{1}{2}\)

Chú ý khi giải

Giải bất phương trình \(\dfrac{m}{{1 - 2m}} > 1\) không được phép nhân chéo.

Đáp án cần chọn là: A

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com