Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Ném vật theo phương ngang từ đỉnh dốc nghiêng góc \({30^0}\) với phương ngang. Lấy \(g = 10{\rm{

Câu hỏi số 366984:
Vận dụng cao

Ném vật theo phương ngang từ đỉnh dốc nghiêng góc \({30^0}\) với phương ngang. Lấy \(g = 10{\rm{ }}m/{s^2}\). Nếu vận tốc ném là 10m/s, vật rơi ở một điểm trên dốc, tính khoảng cách từ điểm ném đến điểm rơi.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:366984
Phương pháp giải

Phương trình quỹ đạo: \(y = \left( {\dfrac{g}{{2.v_0^2}}} \right).{x^2}\)

Áp dụng tỉ số lượng giác và định lí Pi – ta – go trong tam giác vuông.

Giải chi tiết

Ta có: \(\left\{ \begin{array}{l}{v_0}\; = 10{\rm{ }}m/s\\g = 10{\rm{ }}m/{s^2}\\\alpha  = {30^0}\end{array} \right.\)

Giả sử vật rơi tại điểm A ở trên dốc có toạ độ (x; y) như hình vẽ:

 

Phương trình quỹ đạo:

\(y = \left( {\dfrac{g}{{2.v_0^2}}} \right).{x^2} = \dfrac{{10}}{{{{2.10}^2}}}.{x^2} \Leftrightarrow y = 0,05{x^2}\,\left( m \right)\,\,\,\,\left( 1 \right)\)

Từ hình vẽ ta có:

\(\tan \alpha  = \dfrac{y}{x} \Leftrightarrow \tan 30 = \dfrac{y}{x} \Rightarrow x = \sqrt 3 y\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{ \begin{array}{l}y = 0,05{x^2}\\x = \sqrt 3 y\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{{20\sqrt 3 }}{3}m\\y = \dfrac{{20}}{3}m\end{array} \right.\)

Khoảng cách từ điểm ném đến điểm rơi:

\(OA = \sqrt {{x^2} + {y^2}}  = \sqrt {{{\left( {\dfrac{{20\sqrt 3 }}{3}} \right)}^2} + {{\left( {\dfrac{{20}}{3}} \right)}^2}}  = \dfrac{{40}}{3}m\)

Đáp án cần chọn là: D

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com