Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGNL Hà Nội, ĐGNL HCM - Ngày 17-18/01/2026
↪ ĐGNL Hà Nội (HSA) - Trạm 3 ↪ ĐGNL HCM (V-ACT) - Trạm 3
Giỏ hàng của tôi

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng \(a.\) Diện tích mặt cầu ngoại

Câu hỏi số 371412:
Thông hiểu

Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng \(a.\) Diện tích mặt cầu ngoại tiếp hình chóp \(S.ABCD\) là:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:371412
Giải chi tiết

\( + )\)Gọi \(O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\).

\( + )\)Xét \(\Delta ABC\)có \(\widehat {ABC} = {90^0}\):

\(A{B^2} + B{C^2} = A{C^2}\) (Định lí Pytago)

\( \Leftrightarrow {a^2} + {a^2} = A{C^2} \Rightarrow AC = a\sqrt 2 \)

\( \Rightarrow OA = OB = OC = OD = \dfrac{{AC}}{2} = a\dfrac{{\sqrt 2 }}{2}\)

\( + )\)Xét \(\Delta SOC\) có \(\widehat {SOC} = {90^0}\):

\(S{O^2} + O{C^2} = S{C^2}\)  (Định lí Pytago)

\( \Leftrightarrow S{O^2} = {a^2} - {\left( {\dfrac{{\sqrt 2 }}{2}a} \right)^2} \Leftrightarrow SO = \dfrac{{\sqrt 2 }}{2}a\)

\(\begin{array}{l} \Rightarrow R = \dfrac{{S{C^2}}}{{2.SO}} = \dfrac{{{a^2}}}{{2.\dfrac{{\sqrt 2 }}{2}a}} = \dfrac{{\sqrt 2 }}{2}a\\ \Rightarrow S = 4\pi .{R^2} = 4\pi {\left( {\dfrac{{\sqrt 2 }}{2}a} \right)^2} = 2\pi {a^2}\end{array}\)

Chọn C

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com