Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho tứ diện \(ABCD.\) Gọi \(I,J\) tương ứng là trung điểm của \(BC,AC.\) Lấy \(M \in AD\) sao cho

Câu hỏi số 371656:
Vận dụng

Cho tứ diện \(ABCD.\) Gọi \(I,J\) tương ứng là trung điểm của \(BC,AC.\) Lấy \(M \in AD\) sao cho không trùng với trung điểm \(AD.\)

a) Tìm giao tuyến \(d\) của \(\left( {MIJ} \right)\) và \(\left( {ABD} \right).\)

b) Gọi \(K = CD \cap JM.\) Tìm giao tuyến \(\Delta \) của \(\left( {MIJ} \right)\) và \(\left( {ABK} \right).\)

Quảng cáo

Câu hỏi:371656
Phương pháp giải

+ Xác định điểm chung thứ nhất.

+ Hai mặt phẳng chứa hai đường thẳng song song cắt nhau theo giao tuyến là đường thẳng đi qua 1 điểm chung của hai mặt phẳng và cùng song song với hai đường thẳng trên.

Giải chi tiết

a) \(\left( {MIJ} \right)\) và \(\left( {ABD} \right)\) có điểm \(M\) là điểm chung thứ nhất.

\(\left\{ \begin{array}{l}\left( {MIJ} \right) \supset IJ\\\left( {ABD} \right) \supset AB\\IJ\parallel AB\end{array} \right. \Rightarrow \) giao tuyến của hai mặt phẳng \(\left( {MIJ} \right)\) và \(\left( {ABD} \right)\) là đường thẳng qua \(M\) và song song với \(IJ,\,\,AB\).

Trong \(\left( {ABD} \right)\) qua \(M\) kẻ

\(MN\parallel AB\,\,\left( {N \in BD} \right) \Rightarrow \left( {MIJ} \right) \cap \left( {ABD} \right) = MN\).

b) \(K = CD \cap JM \Rightarrow K \in JM \subset \left( {MIJ} \right)\).

Ta có: \(\left\{ \begin{array}{l}K \in \left( {ABK} \right)\\K \in \left( {MIJ} \right)\end{array} \right. \Rightarrow K \in \left( {ABK} \right) \cap \left( {MIJ} \right)\).

\(\left\{ \begin{array}{l}\left( {ABK} \right) \supset AB\\\left( {MIJ} \right) \supset IJ\\AB\parallel IJ\end{array} \right. \Rightarrow \left( {ABK} \right) \cap \left( {MIJ} \right) = Kx\parallel AB\parallel IJ\) .

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com