Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(B\), \(AB = a,\,\,AC = a\sqrt 3 \). Biết

Câu hỏi số 376379:
Thông hiểu

Cho hình chóp \(S.ABC\) có đáy là tam giác \(ABC\) vuông tại \(B\), \(AB = a,\,\,AC = a\sqrt 3 \). Biết \(\Delta SAB\)là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng \(\left( {ABC} \right)\). Tính thể tích khối chóp \(S.ABC\).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:376379
Phương pháp giải

- Xác định chân đường cao hạ từ S xuống mặt phẳng đáy

- Dựa vào các dữ kiện của bài toán để tính độ dài đường cao

- Tính thể tích khối chóp theo công thức \(V = \dfrac{1}{3}.h.{S_{ABC}}\)

Giải chi tiết

Tam giác \(ABC\) vuông tại \(B\) nên \(B{C^2} = \sqrt {A{C^2} - A{B^2}}  = \sqrt 2 a.\)

\( \Rightarrow {S_{ABC}} = \dfrac{1}{2}AB.BC = \dfrac{1}{2}.a.a\sqrt 2  = \dfrac{{{a^2}\sqrt 2 }}{2}\).

Gọi \(H\)  là trung điểm của \(AB\)\( \Rightarrow SH \bot AB\) ta có:

\(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\\left( {SAB} \right) \supset SH \bot AB\end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\).

Tam giác \(SAB\) đều cạnh \(a \Rightarrow SH = \dfrac{{a\sqrt 3 }}{2}\).

Vậy \({V_{S.ABC}} = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 2 }}{2} = \dfrac{{{a^3}\sqrt 6 }}{{12}}.\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com