Tìm giá trị của tham số \(m\) để phương trình \({x^4} - \left( {2m + 4} \right){x^2} + 2m + 3 = 0\) có
Tìm giá trị của tham số \(m\) để phương trình \({x^4} - \left( {2m + 4} \right){x^2} + 2m + 3 = 0\) có \(4\) nghiệm phân biệt \({x_1},{x_2},{x_3},{x_4}\) thỏa mãn \(\frac{1}{{x_1^2}} + \frac{1}{{x_2^2}} + \frac{1}{{x_3^2}} + \frac{1}{{x_4^2}} - \frac{1}{{{x_1}{x_2}{x_3}{x_4}}} = 5.\)
Đáp án đúng là: B
Quảng cáo
Đặt \({x^2} = t\,\,\left( {t \ge 0} \right).\) Phương trình bài cho có 4 nghiệm phân biệt \( \Leftrightarrow \) phương trình ẩn \(t\) có hai nghiệm dương phân biệt.
Áp dụng định lý Vi-et và biểu thức bài cho để tìm \(m.\)
Đáp án cần chọn là: B
>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












