Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Phương trình \(\cos x = \dfrac{1}{3}\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2\pi } \right)\)?

Câu 377722: Phương trình \(\cos x = \dfrac{1}{3}\) có bao nhiêu nghiệm trong khoảng \(\left( {0;2\pi } \right)\)?

A. 0

B. 1

C. 2

D. 4

Câu hỏi : 377722

Phương pháp giải:

- Giải phương trình lượng giác cơ bản: \(\cos x = \cos \alpha  \Leftrightarrow x =  \pm \alpha  + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).


- Tìm nghiệm thỏa mãn điều kiện.

  • Đáp án : C
    (5) bình luận (0) lời giải

    Giải chi tiết:

    \(\cos x = \dfrac{1}{3} \Leftrightarrow x =  \pm \arccos \dfrac{1}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\).

    Xét họ nghiệm \(x = \arccos \dfrac{1}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) ta có:

    \(x \in \left( {0;2\pi } \right) \Rightarrow 0 < \arccos \dfrac{1}{3} + k2\pi  < 2\pi  \Leftrightarrow  - 0,19 < k < 0,80\).

    Mà \(k \in \mathbb{Z} \Rightarrow k = 0 \Rightarrow x = \arccos \dfrac{1}{3}\).

    Xét họ nghiệm \(x =  - \arccos \dfrac{1}{3} + k2\pi \,\,\left( {k \in \mathbb{Z}} \right)\) ta có:

    \(x \in \left( {0;2\pi } \right) \Rightarrow 0 <  - \arccos \dfrac{1}{3} + k2\pi  < 2\pi  \Leftrightarrow 0,19 < k < 1,19\).

    Mà \(k \in \mathbb{Z} \Rightarrow k = 1 \Rightarrow x =  - \arccos \dfrac{1}{3} + 2\pi \).

    Vậy phương trình ban đầu có 2 nghiệm thỏa mãn điều kiện.

    Chọn C.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com